MATH SOLVE

1 month ago

Q:
# Which function is most likely graphed on the coordinate plane below? What is the equation of the line perpendicular to 2x β 3y = 13 that passes through the point (β6, 5)? Y=2/3 x +9Y=-3/2x-4Y=-3/2 x -13Y=2/3x-1

Accepted Solution

A:

Answer:[tex]y=\frac{-3}{2}x-4[/tex]Step-by-step explanation: the equation of the line perpendicular to 2x β 3y = 13It passes through the point (β6, 5)[tex]2x -3y = 13[/tex]Subtract 2x from both sides[tex]-3y =-2x+13[/tex]Divide both sides by -3[tex]y=\frac{2}{3}x-\frac{13}{3}[/tex]Slope = 2/3Slope of perpendicular lines are negative reciprocal of one anotherslope of perpendicular line is [tex]\frac{-3}{2}[/tex]Point (-6,5)[tex]y-y1=m(x-x1)[/tex][tex]y-5=\frac{-3}{2}(x+6)[/tex][tex]y-5=\frac{-3}{2}x-9[/tex]Add 5 on both sides[tex]y=\frac{-3}{2}x-4[/tex]